

Software Configuration Management Audits
Part 2 – Functional Configuration Audits (FCA)

By Linda Westfall

lwestfall@westfallteam.com

In the first part of this article, we introduced the three different types of Software Configuration
Management Audit:

• Functional Configuration Audit (FCA)

• Physical Configuration Audit (PCA)

• In-Process SCM Audits

We also talked about when these audits occur in the software development life cycle

This second part of the article talks about Functional Configuration Audits and their purpose. It will also
provide examples of checklists that could be used during FCA evaluations and suggests evidence-
gathering techniques for each item in those checklists.

Purpose of a Functional Configuration Audit (FCA)

According to the IEEE, an FCA is an audit conducted to verify that: [IEEE-610]

• The development of a configuration item has been completed satisfactorily

• The item has achieved the performance and functional characteristics specified

• Its operational and support documents are complete and satisfactory

An FCA is performed to provide an independent evaluation that the as-built, as-tested system/software
and its deliverable documentation meet the specified functional, performance, and other quality attribute
requirements.

An FCA is essentially a review of the system/software’s verification and validation (V&V) data to ensure
that the deliverables are sufficiently mature for transition into either beta testing or production at the end
of the development cycle. If FCAs are conducted at intermediate milestones, they review V&V data to
ensure that the deliverables of each milestone are mature enough to transition to the next development
phase depending on where in the life cycle the FCA is conducted.

Checklist Item Suggestions for Evidence-Gathering Techniques

Table 1 illustrates an example of a checklist and lists possible objective evidence-gathering techniques
for each checklist item that would be used for an FCA conducted at any baseline or major milestone.

While several suggested evidence-gathering techniques are listed for each checklist item, the level of
rigor chosen for the audit will dictate which of these techniques (or other techniques) will actually be used.
For example, when evaluating whether the code implements all and only the documented requirements, a
less rigorous approach would be to evaluate the traceability matrix, while a more rigorous audit might
examine actual code samples and review the code against the allocated requirements.

mailto:lwestfall@westfallteam.com

Table 1 – Example Checklist and Evidence-Gathering Techniques Used During Any FCA

Checklist Item Suggestions for Evidence-Gathering Techniques

1. Does each baselined configuration

item (CI) implement all and only the

documented software/system

requirements?

• Evaluate requirements-to-CI forward and backward

traceability information for completeness and to

ensure that no unauthorized functionality has been

implemented.

• Sample a set of requirements and using the

traceability information, review each associated,

baselined CI for implementation completeness and

consistency.

• Sample a set of approved enhancement requests and

review their resolution status (or if approved for

change, evaluate their associated, baselined CIs for

implementation completeness and consistency).

• Sample a set of baselined CIs and compare with the

previous versions to identify changes. Ensure that

each change corresponds to a requirement or

approved change request.

2. Are all the defects/anomalies

reported during verification &

validation (V&V) activities adequately

resolved (or the appropriate

waivers/deviations obtained and

known defects with work-arounds

are documented in the release

notes)?

• Review a sample set of approved defect/ anomaly

report records for evidence of adequate resolution.

• Sample a set of defect/anomaly report records and

review their resolution status (or if approved for

change, evaluate their associated CIs for

implementation completeness and consistency).

• Review V&V iteration results data (e.g., re-peer

review records, re-test/regression test logs, test case

status, and/or metrics) to ensure adequate V&V

iteration coverage after defect correction.

Table 2 illustrates an example of a checklist and lists possible objective evidence-gathering techniques
for each checklist item that would be used for an FCA conducted at the product/release baseline.

Table 2 – Example of Additional Checklist Item and Evidence-Gathering Techniques Used for FCA at

Product/Release Baseline

 Checklist Item Suggestions for Evidence-Gathering Techniques

3. Can each system/software

requirement be traced forward into

tests cases/procedures that V&V that

requirement?

• Evaluate requirements-to-tests traceability

information for completeness.

• Sample a set of requirements and using the

traceability information, review the associated test

documentation (e.g., test plans, defined test

cases/procedures) for adequacy of V&V by ensuring

the appropriate level of test coverage for each

requirement.

4. Is comprehensive system/software

testing complete, including functional

testing, interface testing and the

testing of required quality attributes

(performance, usability, safety,

security, etc.)?

• Review approved V&V reports for accuracy and

completeness.

• Evaluate approved test documentation (e.g., test

plans, defined test cases/procedures) against test

results data (e.g., test logs, test case/procedure

status, test metrics) to ensure adequate test coverage

of the requirements and system/software during test

execution.

• Execute a sample set of test cases to evaluate the

accuracy of test results.

5. Is the operational & support

documentation consistent with the

requirements and as-built

system/software?

• Review minutes from peer reviews and defect

resolution information from operational & support

documentation reviews for evidence of consistency.

• Evaluate formal test documentation (e.g., test plans,

defined test cases/procedures) against test results

data (e.g., test logs, test case/procedure status, test

metrics) to ensure adequate test coverage of the

operational & support documentation during test

execution.

• Review sample set of updates to previously delivered

documents to ensure consistency with requirements

and as built system/ software?

