
Copyright © 2009 The Westfall Team. All Rights Reserved.

Risk-Based Configuration Control – Balancing Flexibility with Stability
By Linda Westfall

www.westfallteam.com

There is a dichotomy in software configuration management.
On one side, individual developers need the flexibility
necessary to do creative work, to modify code to try out
what-if scenarios, and to make mistakes, learn from them
and evolve better software solutions. On the other side,
teams need stability to allow code to be shared with
confidence, to create builds and perform testing in a
consistent environment, and to ship high-quality products
with confidence. This requires an intricate balance to be
maintained. Too much flexibility can result in problems
including, unauthorized and/or unwanted changes, the
inability to integrate software components, uncertainty about
what needs to be tested and working programs that suddenly stop working. On the other hand, enforcing
too much stability can result in costly bureaucratic overhead, delays in delivery, and may even require
developers to ignore the process in order to get their work done.

This paper explores risk-based software configuration control. It also examines techniques that can be
used to help maintain this necessary balance between flexibility and stability, as software moves through
the life cycle. These techniques include:

• Selecting the appropriate type and level of control for each software artifact

• Selecting the right acquisition point for each configuration item

• Utilizing multiple-levels of formal control authority

Risk-Based Configuration Control

So how much flexibility can we afford
when it comes to controlling change to
our software products and components?
How much stability do we need? The
answer to this, like many questions in
software development, depends on risk.
As illustrated with the examples in
Figure 1, there are many risk indicators
that need to be considered when
determining the amount of necessary
configuration control. For example,
lower risk projects with small teams that
communicate constantly while
implementing small increments of
functionality that are built and tested
frequently can safely select a more
flexible configuration control philosophy.
Agile software development projects are
typically an example of this type of
project. Higher risk projects (or
programs), with large, geographically

Figure 1: Examples of Risk Indicators

Lower Risk

Small Team

Co-Located

Small Increment

Frequently

Co-Located

Minimal Change

Minimal/None

Non-Regulated

Single Release in
Production

Higher Risk

Large Team

Geographically
Disperse

Large Release

Infrequently

Contract Driven

High Churn

Extensive

Regulated

Multiple Releases
in Production

Team Size

Team Location

Product Size

Build & Test

Customer Communication

Requirements Change

Safety/Security Requirements

Industry

Releases Supported

StabilityFlexibility

Copyright © 2009 The Westfall Team. All Rights Reserved.

dispersed teams that are implementing large software systems following a more traditional life cycle, will
typically require more stability and therefore more rigorous configuration control techniques.
Projects/programs in a regulated environment or with requirements for high levels of safety or security will
also typically require more stability.

But the choice isn’t really between complete flexibility (anyone can change anything at any time) and
complete stability (everything is locked down so that change only happens through rigorous control
processes). As the software product is being created, reviewed, tested internally to development,
independently tested and finally released, components of that product can move through a continuum
from complete flexibility, through various levels of more rigorous control, to a stability at shipment to the
end-users. Decisions about when and how to implement those levels of control are part of risk based
configuration control.

The level of risk for each project/program should be analyzed to determine the level of control necessary
at any point in time during the life cycle to strike the appropriate level of balance between flexibility and
stability for that project/program. This risk-based analysis can then be utilized to make decisions about
the types and levels of control, acquisition points, and number of levels of control authority that are
appropriate for each software artifact produced by that project/program. These choices are then
documented as part of that project/program’s software configuration management plans.

Types & Levels of Control

The software development process produces
many different software artifacts. Software
artifacts are any tangible output from the
software process. Examples of software
artifacts include documents, code, models,
reports, minutes, data, logs and notes. As
illustrated in Figure 2, these artifacts may be
controlled at various levels. In fact, some
artifacts are temporary and therefore pose no
risk if they change, so they are never placed
under any kind of control. Examples of
temporary software artifacts include printed
program listings with the programmer’s hand
written annotations, weekly status reports or a
scribe’s personal notes from a meeting that are
later used as input to the formal meeting
minutes.

Software artifacts that are controlled fall into two major categories. The first category of controlled
software artifacts is called quality records. Quality records provide the evidence, used by management,
auditors, assessors or regulators, that the appropriate quality and process activities took place and that
the execution of those activities met required standards, policies and/or procedures. Examples of quality
records include meeting minutes, reports, change requests, completed checklists or forms, formal sign-
off/approval pages, and logs. Artifacts designated as quality records must be controlled, but are not
considered to be under formal configuration control. For example, it would be considered overkill to
report a correction to a set of meeting minutes by opening up a change request in the change request tool
and formally approve and track that change to closure. However, procedures should be established to
define the controls for the identification, storage, protection, retrieval, retention time, and disposition of
quality records. Quality records should also remain legible, readily identifiable and retrievable. [Based on
ISO 9001:2008]

The second category of controlled software artifacts is called configuration items. A configuration item is
a controlled software artifact placed under formal configuration management and treated as a single
entity. Because of the high risk of direct impact on the customers/end-users if issues arise, externally
delivered software products and data (e.g., executables, source code, data, user documentation) should
always be designated as configuration items. The following are examples of other software artifacts that
could be classified as configuration items and be formally controlled using configuration control
procedures as necessary based on risk analysis:

Configuration Control

Controlled
Software
Artifacts

Control at the
Entity Level

(Document Control)

Control at the
Change Level
(Change Control)

Configuration
Items

Configuration Control

Controlled
Software
Artifacts

Control at the
Entity Level

(Document Control)

Control at the
Change Level
(Change Control)

Configuration
Items

Control of
Quality

Records

Quality
Records

Uncontrolled
Software
Artifacts

Figure 2: Levels of Software Artifact Control

Copyright © 2009 The Westfall Team. All Rights Reserved.

• Designated internal software work products and data (e.g., plans, specifications, test cases and
procedures)

• Designated support tools used to create or support the software product (e.g. compliers, linkers,
build files) Supplier/vendor supplied software

• Customer supplied software/equipment

As also illustrated in Figure 2, there are two levels of rigor for configuration control:

1. Configuration control at the change level, called change control

2. Configuration control at the entity level, called document control

Change control is the most
rigorous level of control and
therefore provides a higher level of
stability for configuration items
controlled at that level. Change
control proactively manages
changes by reviewing each
proposed change before it is
implemented and allowing only
authorized changes to be made to
the configuration items. Higher
risk configuration items are
typically placed under this level of
control. Examples of configuration
items that are typically controlled
through change control include
requirements, interface and design
specifications, and source code.

Figure 3 illustrates the change
control process. When an author
is assigned to create a new
configuration item, that author can
make any changes necessary to
create and update that product as it
is being created. However, at some
point that configuration item is
acquired (baselined for internal use)
and placed under confirmation
control. As that item (and other
items) is being used and tested
internally by the development
organization or later used in
operations (production), problems or
enhancements may be identified.
The change control process
requires that each change to
baselined configuration items be
formally documented in a change
request and that the appropriate
change authority review that
request. That authority can defer
that request to a later time,
disapprove or approve the change.
If the change request is approved,
one or more authors are assigned to
make the changes to the

Private ChangesPrivate Changes

Assign
Author

Create/
Change

Configuration
Item

Verification

Fix/
Change

Disapprove
Change

Approve
Change

Communicate
Reasons for
Disapproval

Wait
Defer

CCB
Decision

?

Disapprove
Change

Approve
Change

Communicate
Reasons for
Disapproval

Wait
Defer

CCB
Decision

?

Release: Baselined
for external use

Operations

Problem/
Enhancement

Identified
?

Yes

No

Release: Baselined
for external use

Operations

Problem/
Enhancement

Identified
?

Yes

No

Issue Change
Request

Yes

Acquisition:
Baselined for
internal use

Internal Use

Problem/
Enhancement

Identified
?

No

Issue Change
Request

Yes

Acquisition:
Baselined for
internal use

Internal Use

Problem/
Enhancement

Identified
?

No

Figure 3: Change Control Process

Figure 4: Document Control Process

Initial
Development of
Configuration

Item

Verify
Configuration

Item

Rework

Private Changes

Initial
Development of
Configuration

Item

Verify
Configuration

Item

Rework

Private Changes

Disapproved

Wait
Defer

CCB
Decision

?

Approved

Baseline
updated

configuration
items

Delete Draft &
Communicate
Reasons for
Disapproval

Rework

Disapproved

Wait
Defer

CCB
Decision

?

Approved

Baseline
updated

configuration
items

Delete Draft &
Communicate
Reasons for
Disapproval

Rework

Being
Used?

Internally

Remove Prior
Version of

Configuration
Item from Use or
Mark Obsolete

Being
Used?

Internally

Remove Prior
Version of

Configuration
Item from Use or
Mark Obsolete

Create
Updated Draft
Configuration

Item

Peer Review
Updated Draft
Configuration

Item

Rework

Private Changes

Acquisition:
Baselined

for use

Internal Use

Problem/
Enhancement

Identified
?

No

Yes

Create
Updated Draft
Configuration

Item

Peer Review
Updated Draft
Configuration

Item

Rework

Private Changes

Acquisition:
Baselined

for use

Internal Use

Problem/
Enhancement

Identified
?

No

Yes

Operations

Problem/
Enhancement

Identified
?

Yes

No

Release: Baselined
for external use

In
Operations Operations

Problem/
Enhancement

Identified
?

Yes

No

Release: Baselined
for external use

In
Operations

Copyright © 2009 The Westfall Team. All Rights Reserved.

configuration items impacted by the requested change. The authors can update their assigned
configuration items as needed to implement the approved change. However, if while they are
implementing the approved change, another defect or enhancement is identified, that new defect or
enhancement must be documented in another change request that goes back through the change control
process.

Document control is a less rigorous level of configuration control than change control and can therefore
be used for less risky configuration items. As illustrated in Figure 4, after the initial version of the
configuration item is acquired and placed under document control; all subsequent changes are made to a
draft (e.g., non-released or preliminary) version of the configuration item. That updated draft must go
through a review cycle and be formally approved by the appropriate level of change authority before it is
released for use. Once an updated version of the configuration item is released for use, procedures
should be in place to ensure that obsolete versions of the configuration item are removed from use. If the
obsolete versions must remain available for reference, they should be clearly marked to indicate that they
are not the most current version of the configuration item. The document control process is more reactive
in managing change than the more formal change control process because it reviews the changed
configuration items after the changes are implemented in draft form. Document control, however, allows
for more flexibility because multiple changes can be made to the same draft and all of those changes are
approved together as a set when the draft document is approved. Document control also allows
problems or enhancements found while making other changes to be implemented in the same draft
without going through an approval cycle first.

Acquisition Points

Another important part of the software
configuration management process is
defining when each configuration item is
initially acquired (i.e., initially baselined
under configuration control). The
Software Program Manager’s Network
says that, “one critical aspect for control
of work products is the proper timing for
when they enter into configuration
management.” [SPMN-98] As illustrated
in Figure 5, quality gates are used to
approve the acquiring of a configuration
item (work product) and its baselining under configuration control. Examples of quality gates include the
successful completion of:

• A peer review (e.g., desk check, inspection, walkthrough)

• A test activity

• A project review (e.g., phase gate review, major milestone review)

• An independent product analysis or audit.

The configuration management plans for a project/program should define the acquisition points and
associated quality gates for each configuration items. The earlier the acquisition point in the life of a
configuration item, the more rigorous the level of control and formal communication about changes to that
item (more stability), the later the acquisition point, the easier and quicker it is to make changes (more
flexibility). The higher the risk that changes to a configuration item will create potential issues, the earlier
in the life cycle the acquisition point is established for that configuration item.

For example, consider a source code module. If the acquisition point is set after peer review, then all
defects found in unit, integration and system test must go through formal change control. The peer
review acquisition point may be too early for most projects, but for example, if a project has an
independent verification and validation (IV&V) team that does unit testing, it may provide the formality
needed for the IV&V and development teams to communicate effectively. For many projects, an
acquisition point for source code may be more appropriately set after unit test or integration test
depending on when the hand off takes place to a testing group outside development. For Agile

Q
uality G

ate

Creation or
update of a

Configuration
Item (work
product)

Acquisition:
Configuration Item

Placed Under
Configuration Control

Author(s) control
changes to the

Configuration Item

Formal change authority
controls changes to
Configuration Item

Figure 5: Configuration Item Acquisition

Copyright © 2009 The Westfall Team. All Rights Reserved.

development teams or other small teams with high levels of internal communications, it may even be
appropriate for the acquisition point to be set at the point of product release, so that only defects reported
from operations (production) are subject to formal change control.

For other configuration items, like requirements or design specification, the successful completion of the
peer review or of a major phase gate or milestone review may be the appropriate acquisition point.
These points act as internal release points where the specification moves from creation by its authors to
use by other members of the project team (development, test, technical publications), so the need for
more control (stability) and more formal communication about changes and their impacts may be
desirable.

Multiple-Levels of Formal Change Authority

Formal change authorities are referred to by many names, Configuration Control Boards (CCB), Change
Control Boards (CCB), Change Authority Boards (CAB) or Engineering Change Boards (ECB). For the
purpose of this article, we will use CCBs to refer to these formal change control authorities.

CCBs are beneficial because they:

• Provide the authority for approving/disapproving changes to configuration items

• Provides visibility into the
configuration control process
and ensure communications
with impacted stakeholders

• Provides a vehicle for impact
analysis

• Facilitates resource allocation

• Plays an integral role in
keeping the software
development process under
control

Another way to create a balance
between the need for rigorous control
and communications (stability) and
the need to expedite the change
process (flexibility) is to create
multiple levels of CCBs. Having
multiple levels of CCBs, allows
small changes, that have limited
scope and impact, to be approved
at lower levels of authority. While
major changes, that impact multiple
stakeholders or multiple work
products, can be escalated to
higher-level CCBs that have
broader scope and involve all
effected parties.

For example, as illustrated in Figure
6, the developer can change a
newly created source code module
as necessary. When it is initially
acquired, a Team Level CCB could
be assigned control change
authority for that module, because
typically only team members need
to be consulted when the code

Developer Create code or
make authorized

changes

Change
Authority

Team Level
CCB

Acquire code for
baseline

Project Level
CCB Promote code to

system test

Product
Level CCB

Release product
that includes

code

Developer Create code or
make authorized

changes

Change
Authority

Team Level
CCB

Acquire code for
baseline

Project Level
CCB Promote code to

system test

Product
Level CCB

Release product
that includes

code

Figure 6: Multiple-Levels of CCBs – Code Example

Figure 7: Membership of Multiple-Levels of CCBs

Product Level CCBProduct Level CCB

Project Level CCBProject Level CCB

Team Level CCBTeam Level CCB

Customers/users
Project Manager
Systems engineering
Hardware development manager
Documentation / technical publications
Software development manager
SQA
SCM
V&V
Software requirements analysts
Software architect/designer
Software engineers

Copyright © 2009 The Westfall Team. All Rights Reserved.

changes at that level. As illustrated in Figure 7, the membership of the Team Level CCB might be limited
to only the software architect/designer and the software engineers on the team. Since this CCB has
limited members, that work closely together, they can usually meet and make decisions quickly.

To continue this example, once system testing starts, the source code module is promoted to the Project
Level CCB (see Figure 6). Changes to that source code module at this phase of the life cycle may impact
software written by other teams, the hardware and/or the documentation as well as the work of the
testers, software configuration management, software quality assurance and other specialists. Changes
this late in the life cycle may also impact project schedules, costs, effort and risks. The membership in
the Project Level CCB expands to include representatives from the various stakeholders that may be
impacted (see Figure 7). In this example, the individual team architect/design and engineering are not
members of the Project Level CCB but may be called upon to participate in that CCB activities as subject
matter experts if their software designs or code is impacted by the requested changes.

Finally when the product from this example is released into production, the course code module is
promoted to the Product Level CCB along with all of the other configuration items that become part of the
product baseline (see Figure 6). Again, the membership of the CCB changes to include the
customer/user representative and management level personnel who are making business decisions
about the longer-term direction of the product (see Figure 7). CCB meetings at this level typically happen
much less frequently, however, and to attempt to control lower level products, early in their life cycle with
this level of CCB would add an extreme time burden that would probably grind software development to a
halt.

Not every configuration item needs to start at the
same level of CCB. Higher risk configuration
items be assigned to higher-level CCB when
they are acquired. For example, as illustrated in
Figure 8, the Software Requirements
Specification (SRS) for this project could go
directly under the control of the Project Level
CCB when it is acquired because of the wider
impact that changes to requirements may have
across the project. The SRS is promoted to the
Product Level CCB along with all of the other
configuration items that become part of the
product baseline when the product is released
into production.

The project/program’s configuration management plans should define the promotion points and
associated quality gates for each type of configuration item, as well as the formal change authority that
owns the configuration item at each level of acquisition/promotion.

Conclusions

Software configuration control can use multiple techniques to maintain the appropriate balance between
flexibility and stability. The level of rigor used for each of these techniques should be determined on a
project-by-project (program-by-program) basis depending on the results of a risk-based analysis of the
software artifacts that will be produced by that project/program. One of the primary roles of the software
configuration management plans for a project/program is to document and communicate these decisions.

References

ISO 9001-2008 American National Standard, Quality Management Systems – Requirements,
ANSI/ISO/ASQ Q9001-2008, American Society for Quality, Milwaukee, Wisconsin,
2008.

SPNM-98 Software Program Manager’s Network, Little Book of Configuration Management,
Computer & Concept Associates,1998 (available at www.spmn.com).

Figure 8: Multiple-Levels of CCBs – Software
Requirements Specification (SRS) Example

Software
Analysis

Create SRS or
make authorized

changes

Change
Authority

Project
Level CCB

Acquire SRS for
baseline

Product
Level CCB

Release product
that includes

software defined
by that SRS

Software
Analysis

Create SRS or
make authorized

changes

Change
Authority

Project
Level CCB

Acquire SRS for
baseline

Product
Level CCB

Release product
that includes

software defined
by that SRS

