
12 Steps to Useful Software Metrics

by Linda Westfall

email: lwestfall@westfallteam.com

phone (work & cell): 972-867-1172

website: Live Courses (softwareexcellenceacademy.com)

Abstract: 12 Steps to Useful Software Metrics introduces the reader to a practical process for

establishing and tailoring a software metrics program that focuses on goals and information

needs. The process provides a practical, systematic, start-to-finish method of selecting,

designing, and implementing software metrics. It outlines a cookbook method that the reader can

use to simplify the journey from software metrics in concept to delivered information.

 Introduction to the Twelve Steps

There are multitudes of possible software metrics based on all of the possible software entities

and all the possible attributes of each of those entities. How do we pick the metrics that are right

for our organizations? The first four steps defined in this article will illustrate how to identify

metrics customers and then utilize the goal/question/metric paradigm to select the software

metrics that match the information needs of those customers. Steps 5-10 present the process of

designing and tailoring the selected metrics, including definitions, measurement function,

measurement method, decision criteria, reporting mechanisms, and additional qualifiers. The last

two steps deal with implementation issues, including data collection and managing the impact of

human factors on metrics.

When I started doing software metrics, there seemed to be two schools of thought. The first said

collect data on everything and then analyze the data to find correlation, meaning, or information.

The second school of thought was what I call the shotgun method of metrics. This method

usually involved collecting and reporting on the current "hot" metrics measurement or using

whatever data was available as a by-product of software development to produce metrics.

These methods are both what I call the Jeopardy approach to metrics. You know the game show

Jeopardy – where they start with the answer, and the contestants try to guess what the question

is. In the Jeopardy approach to metrics, we start with the metric and try to guess what it tells us

about our software processes, products, or services.

There are problems with both of these methods. The problem with the first method is that if we

consider all of the possible software entities and their possible attributes that can be measured,

there are too many measures. It would be easy to drown an organization in the enormity of the

task of trying to measure everything. One of my favorite quotes talks about "spending all of our

time reporting on the nothing we are doing because we are spending all of our time reporting."

The problem with the second method can be illustrated in Watts Humphrey's quote, "There are

so many possible measures in a complex software process that some random selection of metrics

will not likely turn up anything of value." [Humphrey-89] In other words, Murphy's Law applies

to software metrics. The one item that is not measured is the one item that should be measured.

mailto:lwestfall@westfallteam.com
https://www.softwareexcellenceacademy.com/Live-Courses

There has been a fundamental shift in the philosophy of software metrics. Software metrics

programs are now being designed to provide the specific information necessary to manage

software projects and improve software products, processes, and services. Organizational,

project, and task goals are determined in advance, and metrics are selected based on those goals.

These metrics are used to determine our effectiveness in meeting our goals. The foundation of

this approach is aimed at making practitioners ask not so much "What should I measure?" but

"Why am I measuring?" or "What business needs does the organization wish its measurement

initiative to address?" [Goodman-93] b

Measuring software is a powerful way to track progress towards our goals. As Grady states,

"Without such measures for managing software, it is difficult for any organization to understand

whether it is successful, and it is difficult to resist frequent strategy changes." [Grady-

92] Appropriately selected metrics can help both management and engineers maintain their focus

on their goals.

Step 1 – Identify Metrics Customers

The first step of the "12 Steps to Useful Software Metrics" is to identify the customers for each

metric. The customer of the metric is the person (or people) who will be making decisions or

taking action based upon the metric; the person/people who need the information supplied by the

metric.

There are many different types of customers for a metrics program. This diversity adds

complexity to the program because each customer may have different information requirements.

Customers may include:

Functional Management: These people are interested in applying greater control to the software

development process, reducing risk, and maximizing return on investment.

Project Management: These people are interested in being able to accurately predict and control

project size, effort, resources, budgets, and schedules. Interested in controlling the projects they

are in charge of and communicating facts to their management.

Software Engineers/Programmers: The people who do software development are interested in

making informed decisions about their work and work products. These people are responsible for

collecting a significant amount of the data required for the metrics program.

Test Managers/Testers: The people responsible for verification and validation activities are

interested in finding as many new defects as possible in the time allocated to testing and

obtaining confidence that the software works as specified. These people are also responsible for

collecting a significant amount of the required data.

Specialists: Individuals performing specialized functions (e.g., Marketing, Software Quality

Assurance, Process Engineering, Software Configuration Management, Audits and Assessments,

Customer Technical Assistance) are interested in quantitative information upon which they can

base their decisions, finding, and recommendations.

Customers/Users: The people who purchase and use the software are interested in the on-time

delivery of high-quality software products and reducing the overall ownership cost.

If a metric does not have a customer, it should not be produced. Metrics are expensive to collect,

report, and analyze, so if no one is using a metric, producing it is a waste of time and money.

The customers' information requirements should always drive the metrics program. Otherwise,

we may end up with a product without a market and a program that wastes time and money. By

recognizing potential customers and involving those customers early in the metric definition

effort, the chances of success are significantly increased.

Step 2 – Target Goals

Basili and Rombach [Basili-88] define a Goal/Question/Metric paradigm that provides an

excellent mechanism for defining a goal-based measurement program. The Goal/Question/Metric

paradigm concept is to identify our goals, determine the questions that need to be answered to

determine if we are meeting or moving towards those goals, and then select metrics that provide

information to help answer those questions. As illustrated in Figure 1, a goal may spawn more

than one questions, a question can relate to more than one goal, and a metric can provide

information to answer more than one question.

The second step in setting up a metrics program is to select one or more measurable goals. The

goals we select to use in the Goal/Question/Metric will vary depending on the level we are

considering for our metrics. At the organizational level, we typically examine high-level strategic

goals like being the low-cost provider, maintaining a high level of customer satisfaction, or

meeting projected revenue or profit margin targets. We typically look at goals that emphasize

project management and control issues or project level requirements and objectives at the project

level. These goals typically reflect the project success factors like on-time delivery, finishing the

project within budget, or delivering software with the required level of quality or performance.

We consider goals that emphasize task success factors at the specific task level. These are often

expressed in terms of the entry and exit criteria for the task.

When talking to our customers, we may find many of their individual needs are related to the

same goal or problem but expressed from their perspective or in the terminology of their

specialty. Many times, what we hear is their frustrations.

For example, the Project Manager may need to improve the way project schedules are estimated.

The Functional Manager is worried about late deliveries. The practitioners complain about

overtime and not having enough time to do things correctly. The Test Manager states that by the

time the test group gets the software, it's too late to test it completely before shipment.

When selecting metrics, we need to listen to these customers and, where possible, consolidate

their various goals or problems into statements that will help define the metrics that are needed

by our organization or team.

In our example, all these individuals are asking for an improved and realistic schedule estimation

process.

Step 3 – Ask Questions

The third step is to define the questions that need to be answered to ensure that each goal is

obtained. For example, if our goal was to ship only defect-free software, we might select the

questions:

· Is the software product adequately tested?

· How many defects are still undetected?

· Are all known defects corrected?

Step 4 – Select Metrics

The fourth step is to select metrics that provide the information needed to answer these

questions. Each selected metric now has a clear objective -- to answer one or more of the

questions that need to be answered to determine if we are moving toward our goals or meeting

our goals.

When selecting metrics, we must be practical, realistic, and pragmatic. Avoid the "ivory-tower"

perspective completely removed from the existing software-engineering environment. Start with

what is possible within the current process. Once we have a few successes, our customers will be

open to more radical ideas -- and may even come up with a few of their own.

Also, remember software metrics don't solve problems. People solve problems. Software metrics

act as indicators and provide information so people can make more informed decisions and

intelligent choices.

An individual metric performs one of four functions. Metrics can help us understand more about

our software products, processes, and services. Metrics can be used to evaluate our software

products, processes, and services against established standards and goals. Metrics can provide

the information we need to control resources and processes used to produce our software.

Metrics can be used to predict attributes of software entities in the future. [based on Humphrey-

89]. A comprehensive metric program includes metrics that perform all of these functions.

An example of the use of this template for the “percentage of known defects corrected” metric

would be:

A requirements statement for each metric can be formally defined in terms of one of these four

functions, the attribute of the entity being measured, and the measurement goal. This statement

leads to the following metrics requirements statement template. Having a clearly defined and

documented requirements statement for each metric has the following benefits:

• Provides a rigor and discipline that helps ensure a well-defined metric based on customer

goals

• Eliminates misunderstandings about how the metric is intended to be used

• Communicates the need for the metric, which can help in obtaining resources to

implement the data collection and reporting mechanisms

• Provides the basis for the design of the metric

Step 5 – Standardize Definitions

The fifth step is to agree to standard definitions for the entities and their measured attributes.

When we use terms like defect, problem report, size, and even project, other people may

interpret these words in their context with meanings that differ from our intended definition.

These interpretation differences increase when more ambiguous terms like quality,

maintainability, and user-friendliness are used.

Additionally, individuals may use different terms to mean the same thing. For example, the terms

defect report, problem report, incident report, fault report, or customer call report may be used

by various organizations to mean the same thing. Unfortunately, they may also refer to different

entities. One external customer may use a customer call report to refer to their complaint and

problem report as the description of the defect in the software. In contrast, another customer may

use a problem report for the initial complaint. Differing interpretations of terminology may be

one of the most significant barriers to understanding.

Unfortunately, there is little standardization in the software industry of the definitions for most

software attributes. Everyone has an opinion, and the debate will probably continue for many

years. Our metrics program cannot wait that long. The approach I suggest is to adopt standard

definitions within your organization and then apply them consistently. You can use those

definitions within the industry as a foundation to get you started. For example, definitions from

the IEEE Glossary of Software Engineering Terminology [IEEE-610] or those found in software

engineering and metrics literature. Pick the definitions that match your organizational objectives

or use them as a basis for creating your definition.

Step 6 – Choose a Measurement Function

The sixth step is to choose a measurement function for the metric. In simple terms, the

measurement function defines how we will calculate the metric. Some metrics called base

measures, direct measures, or metric primitives are measured directly, and their measurement

function typically consists of a single variable. Examples of base measures include the number of

lines of code reviewed during an inspection or the hours spent preparing for an inspection

meeting. More complex metrics, called derived measures, are calculated using mathematical

combinations (e.g., equations or algorithms) of base measures or other derived measures. An

example of a derived measure would be the inspection's preparation rate which is calculated as

the number of lines of code reviewed divided by the number of preparation hours.

Many measurement functions include an element of simplification. This simplification is both

the strength and the weakness. When we create our measurement function, we need to be

pragmatic. If we try to include all elements that affect the attribute or characterize the entity, our

function can become so complicated that it's useless. Being pragmatic means not trying to create

the most comprehensive function. It means picking the aspects that are the most important.

Remember that the function can always be modified to include additional levels of detail in the

future. Ask yourself the questions:

• Does the function provide more information than we have now?

• Is the information of practical benefit?

• Does it tell us what we want to know?

There are two methods for selecting a measurement function: use an existing function or create a

new one. In many cases, there is no need to "re-invent the wheel." Many software metrics

functions exist that have been used successfully by other organizations. These are documented in

the current literature and in proprietary products that can be purchased. With a little research, we

can utilize these functions with little or no adaptation to match our own environment.

The second method is to create our own function. The best advice here is to talk to the people

responsible for the product or resource or who are involved in the process. They are the experts.

They know what factors are significant. If we create a new function for our metric, we must

ensure it is intelligible to our metric customers, and we must prove it is a valid function for what

we are trying to measure. Often, this validation can occur only through the application of

statistical techniques.

To illustrate the selection of a function, let's consider a metric for the duration of unplanned

system outages. If we evaluate a software system installed at a single site, a simple function such

as minutes of outage per calendar month may be sufficient. If our objective is to compare

different software releases installed on varying numbers of sites, we might select a function such

as minutes of outage per 100 operation months. If we wanted to focus on our customers' impact,

we might select minutes of outage per site per year.

Step 7 – Establish a Measurement Method

The seventh step in designing a metric is breaking the function down into its lowest level base

measures (metric primitives) and defining the measurement method used to assign a value to

each base measure. The measurement method defines the mapping system used to assign

numbers or symbols to the attributes.

Some measurement methods are established by using standardized units of measure (e.g., inches,

feet, pounds, liters, dollars, hours, days). Other measurement methods are based on counting

criteria, simple counts of items with certain characteristics. For example, if the metric is the

problem report arrival rate per month, we could count all of the problem reports in the database

that had an open date each month. However, if we wanted defect counts instead of just problem

report counts, we might exclude all the reports that didn't result from a product defect (e.g.,

works as designed, user error, withdrawn). Other rules may also be used for the measurement

method. For example, what rules does your organization use for assigning severity to a problem

report? These rules might include judging how much of the software’s functionally is impacted

(e.g., more than 50%, <=50% but >20%, <= 20%) or the duration of that impact (for more than

60 second, <=60 seconds but < 15 seconds, <= 15 seconds) or other criteria.

The importance of the need for defining a measurement method can be illustrated by considering

the lines of code metric. The lines-of-code measure is one of the most used and most often

misused of all of the software metrics. The problems, variations, and anomalies of using lines of

code are well documented [Jones-86], and there is no industry-accepted standard for counting

lines of code. Therefore, if you are going to use a metric based on lines of code, a specific

measurement method must be defined. This method should also accompany the metric in all

reports and analyses so that metrics customers can understand the definition of the metric.

Without this, invalid comparisons with other data are almost inevitable.

The base measures and their measurement methods define the first level of data to be collected to

implement the metric. To illustrate this, let's use the function of minutes of system outage per

site per year. One of the base measures for this model is the number of sites. At first, counting

this base measure seems simple. However, when we consider the dynamics of adding new sites

or installing new software on existing sites, the counting criteria become more complex. Do we

use the number of sites on the last day of the period or calculate some average number of sites

during the period? Either way, we will need to collect data on the date the system was installed

on the site. In addition, if we intend to compare different software releases, we will need to

collect data on what releases have been installed on each site and when each was installed.

Step 8 – Define Decision Criteria

The eighth step is defining decision criteria. Once we have decided what to measure and how to

measure it, we have to decide what to do with the results. According to the ISO/IEC 15939

Software Engineering -- Software Measurement Process standard, decision criteria are the

"thresholds, targets, or patterns used to determine the need for action or further investigation, or

to describe the level of confidence in a given result". [ISO/IEC-15929] In other words, the

decision criteria provide the guidance that will help the metrics customers interpret the

measurement results.

Going back to Humphrey's four reasons to measure (i.e., control, evaluate, understand and

predict). [Humphry-89] Control metrics are used to monitor our software projects, processes,

products, and services and identify areas where corrective or management action may be

required. Metrics used for control act as "red flags" to warn us when things are not as expected or

planned. If all is going well, the decision should be "everything is fine and therefore no action is

required." The decision criteria for control type metrics usually take the form of: [Westfall-17]

• Thresholds: a value that, when crossed, indicates that an out-of-control condition may

exist. For example, if we planned our project assuming a 15% staff turnover, we could

track our actual staff turnover against a 15% threshold.

• Variances: the difference between two values that, when it exceeds a specific value,

indicates an out-of-control condition may exist. For example, we could track the variance

between our budget and actual expenditures.

• Control limits: specific upper and lower boundary values used to indicate that an out-of-

control condition might exist. For example, the upper and lower control limits in a

statistical process control chart.

Evaluate type metrics are used to examine and analyze the measurement information as part of

our decision-making processes. For metrics used to evaluate, decision criteria help define "what

good." For example, suppose we want to make a 15% return on investment (ROI) for our project.

In that case, the decision criteria could indicate that the benefit to cost ratio must be at least 1.15,

or we shouldn't initiate the project. We might also establish decision criteria for our exit from

software qualification testing. If decision criteria are not met, then testing should continue.

Examples of these software qualification test decision criteria could include:

• At least X% of all planned test cases must be executed, and at least Y% of those must

have passed.

• Zero non-closed critical problems can exist, no more than X major non-closed problems

can exist, all of which have workarounds, and no more than X minor non-closed

problems can exist. (I use the term non-closed instead of open because of the possible

ambiguity of the word open. For example, developers may consider a problem no longer

"open" when they have corrected it, but it may not htegrated into the product and

retested).

• The arrival rate of new problem reports must be decreasing towards zero with no new

critical problems reported in the last X number of days.

For metrics used to understand and predict, it is typically the "level of confidence in a given

result" portion of the ISO 15939 definition that applies. How confident are we that the

understanding we have gained from the metric reflects reality? How confident are we that our

prediction reflects what the actual values will be in the future? One method we can use is to

calculate statistical confidence intervals. However, we can also obtain a more subjective

confidence level by considering factors including:

• The completeness of the data used. For example, if we are trying to understand the

amount of effort we expend on software development, does our time reporting system

include all the time spent, including unpaid overtime?

• Is the data used subjective or objective? Has human or other types of bias crept into the

data?

• What is the integrity and accuracy of the data? For example, if we again consider time

card data are people completing their time cards as they complete tasks or are they

waiting until the end of the week and then estimating how much time they spend on

various projects.

• How stable is the product, process or service being measured? For example, if we are

using a new process or a new programming language, we may not be very confident in a

prediction we make based on our historic data, or we may not have any relevant historic

data upon which to base our predictions.

• What is the variation within the data set? For example, if we look at the distribution in a

data set that has little variance, we can be fairly confident that the mean (average) of that

data set accurately represents that data sent. However, if the data set has a large amount

of variance or a bi-modal distribution, our confidence level that the mean accurately

represents the data set is decreased.

Step 9 – Define Reporting Mechanisms

The ninth step is to decide how to report the metric. This step includes defining the report

format, data extraction and reporting cycle, reporting mechanisms, distribution, and availability.

The report format defines what the information product looks like. Is the information product a

table with multiple measurement values? Is the new measure added as the latest value in a trend

chart that tracks values for the metric over multiple periods? Should that trend chart be a bar,

line, or area graph? Is it better to compare values using stacked bars or a pie chart? Do the tables

and graphs stand alone, or is there detailed analysis text included with the report? Are goals,

control values, or other decision criteria included in the report?

The data extraction cycle defines how often the data snap-shot(s) are required for the metric and

when they will be available for use for calculating the measurement. The reporting cycle defines

how often the report is generated and when it is due for distribution. For example, root cause

analysis measurements may be triggered by some event, like the completion of a phase/iteration

in the software development process. Other metrics like the defect arrival rate may be extracted

and reported daily during testing and extracted monthly and reported quarterly after the product

is released to the field.

The reporting mechanism outlines the way that the metric is delivered (i.e., hard copy report,

email, on-line electronic data).

Defining the distribution involves determining who receives regular copies of the report or

access to the metric. The availability of the metrics defines any restrictions on access to the

metric (i.e., need to know, internal use only) and the approval mechanism for additions and

deletions to access or standard distribution.

Step 10 – Determine Additional Qualifiers

The tenth step in designing a metric is determining the additional metric qualifiers. A good

metric is a generic metric. That means the metric is valid for an entire hierarchy of additional

qualifiers. For example, we can talk about the duration of unplanned outages for an entire

product line, an individual product, or a specific release of that product. We could look at

outages by customer or business segment. Alternatively, we could look at them by type or cause.

The additional qualifiers provide the demographic information needed for these various views of

the metric. The main reason additional qualifiers need to be defined as part of the metrics design

is that they determine the second level of data collection requirements. Not only is the metric

primitive data required, but data also has to exist to allow the distinction between these

additional qualifiers.

Step 11 – Collect Data

The question "what data to collect?" was answered in steps 7 and 10 of the 12 steps. The answer

is to collect all the data required to provide the metrics primitives and the additional qualifiers.

In most cases, the "owner" of the data is the best answer to "who should collect the data?" The

data "owner" is the person with direct access to the source of the data and, in many cases, is

responsible for generating the data. Table 1 illustrates the owners of various kinds of data.

Benefits of having the data owner collect the data include:

• Data is collected as it is being generated, which increases accuracy and completeness
• Data owners are more likely to be able to detect anomalies in the data as it is being collected,

which increases data accuracy
• Human error caused by duplicate recording (once by data recorder and again by data entry

clerk) is eliminated, which increases accuracy

Once the people who gather the data are identified, they must agree to do the work. They must be

convinced of the importance and usefulness of collecting the data. Management needs to support

the program by giving these people the time and resources required to perform data collection

activities. Support staff must also be available to answer questions and deal with data and data

collection problems and issues.

 A training program should be provided to help ensure that the people collecting the data

understand what to do and when to do it. As part of the preparation for the training program,

suitable procedures must be established and documented. These courses can be as short as one

hour for simple collection mechanisms. I have found that hands-on, interactive training provides

the best results, where the group works actual data collection examples.

Without this training, hours of support staff time can be wasted answering the same questions

repeatedly. An additional benefit of training is that it promotes a shared understanding of when

and how to collect the data. This understanding reduces the risk of collecting invalid and

inconsistent data.

If the correct data is not collected accurately, then the objectives of the measurement program

cannot be accomplished. Data analysis is pointless without good data. Therefore, establishing a

sound data collection plan is the cornerstone of any successful metrics program. Data collection

must be:

• Objective: The same person will collect the data the same way each time.
• Unambiguous: Two different people collecting the same measure for the same item will collect

the same data.
• Convenient: Data collection must be simple enough not to disrupt the working patterns of the

individual collecting the data. Therefore, data collection must become part of the process and
not an extra step performed outside the workflow.

• Accessible: Easy access to the data is required for data to be useful and used. Therefore, even if
the data is collected manually on forms, it must ultimately be included in a metrics database.

There is widespread agreement that as much of the data gathering process as possible should be

automated. At a minimum, standardized forms should be used for data collection, but at some

point, the data from these forms must be entered into a metrics database to have any long-term

usefulness. I have found that information that stays on forms quickly becomes buried in file

drawers, never to see the light of day again.

Dumping raw data and hand tallying or calculating metrics is another way to introduce human

error into the metrics values. Even if the data is recorded in a simple spreadsheet, automatic

sorting, data extraction, and calculation are available and should be used. Using a spreadsheet or

database also increases the speed of producing the metrics over hand tallies.

Automating metrics reporting and delivery eliminates hours spent standing in front of copy

machines. It also increases usability because the metrics are available on the computer instead of

buried in a pile of papers on the desk. Remember, metrics are expensive. Automation can reduce

expenses while making the metrics available in a timelier manner.

Step 12 – The People Side of the Metrics Equation

No discussion on selecting, designing, and implementing software metrics would be complete

without looking at how measurements affect people and people affect measurements. Whether a

metric is ultimately valuable for an organization depends upon the people's attitudes in collecting

the data, calculating, reporting, and using the metric. The simple act of measuring will affect the

behavior of the individuals being measured. When something is being measured, it is

automatically assumed to have importance. People want to look good; therefore, they want the

measures to look good.

When creating a metric, always decide what behaviors you want to encourage. Then take a long

look at what other negative behaviors might result from using or misusing the metric. For

example, management uses the metrics to prod or punish individuals or teams. Another example

would be people trying to manipulate the measurement results. One of my favorite measurement

quotes is, "Don't underestimate the intelligence of your engineers. For any one metric you come

up with, they will find at least two ways to beat it" [Unknown]

This concern does not mean that we give up on a metrics program because people might misuse

the metrics. It means we have to be conscious of potential problems and proactively plan how to

deal with them. As the last step in the "12 Steps to Useful Software Metrics", we determine the

positive behaviors that we want as a result of implementing the metric and the possible negative

behaviors that might result from its implementation. We can then create an action plan on how

we will emphasize the positives and eliminate or at least minimize the negatives.

The best way I have found to deal with human factors issues in working with metrics is to follow

some basic rules:

Don't measure individuals: The state-of-the-art in software metrics is not up to this yet.

Individual productivity measures are the classic example of this mistake. Remember that we

often give our best people the most challenging work and then expect them to mentor others in

the group. If we measure productivity in lines of code per hour, these people may concentrate on

their work to the detriment of the team and the project. Even worse, they may come up with

unique ways of programming the same function in many extra lines of code. Focus on processes

and products, not people.

Never use metrics as a "stick": The first time we use a metric against an individual or a group

is the last time we get valid data.

Don't ignore the data: A sure way to kill a metrics program is to ignore the data when making

decisions. "Support your people when their reports are backed by data useful to the organization"

[Grady-92]. If the goals we establish and communicate don't agree with our actions, then the

people in our organization will perform based on our behavior, not our goals.

Never use only one metric: Software is complex and multifaceted. A metrics program must

reflect that complexity. A balance must be maintained between cost, product (including quality),

and schedule attributes to meet the customer's needs. Focusing on any single metric can cause

the attribute to be measured to improve at the expense of other attributes, resulting in an anorexic

software development process.

Select metrics based on goals: Metrics act as a big spotlight focusing attention on the measured

area. By aligning our metrics with our goals, we focus people's attention on the things that are

important to us.

Provide feedback: Providing regular feedback to the team about the data they help collect has

several benefits:

• It helps maintain focus on the need to collect the data. When the team sees the data being
used, they are more likely to consider data collection important.

• If team members are kept informed about precisely how the data is used, they are less likely to
become suspicious or fearful that it is being used against them.

• By involving team members in data analysis and process improvement efforts, we benefit from
their unique knowledge and experience.

• Feedback on data collection problems and data integrity issues helps educate team members
responsible for data collection. The benefit can be more accurate, consistent, and timely data.

Obtain "buy-in": To have 'buy-in" to both the goals and the metrics in a measurement program,

team members need to feel ownership. Participating in the definition of the metrics will enhance

this feeling of ownership. In addition, the people who work with a process daily will have

intimate knowledge of that process. This participation gives them a valuable perspective on how

the process can best be measured to ensure accuracy and validity and best interpret the measured

result to maximize usefulness.

Conclusion

A metrics program based on an organization's goals will help communicate, measure progress

towards, and eventually attain those goals. People will work to accomplish what they believe to

be important. Well-designed metrics with documented objectives can help an organization obtain

the information it needs to continue to improve its software products, processes, and services

while maintaining a focus on what is essential. A practical, systematic, start-to-finish method of

selecting, designing, and implementing software metrics is valuable in ensuring the consistent

collection, reporting, and use of the measurement information.

References

[Basili-88] V. R. Basili, H. D. Rombach, 1988, The TAME Project: Towards

Improvement-Oriented Software Environments. In IEEE Transactions in Software Engineering

14(6) (November).

[Fenton-91] Norman E. Fenton, 1991, Software Metrics, A Rigorous Approach, Chapman

& Hall, London.

[Goodman-93] Paul Goodman, 1993, Practical Implementation of Software Metrics,

McGraw Hill, London.

[Grady-92] Robert B. Grady, 1992, Practical Software Metrics for Project Management

and Process Improvement, Prentice-Hall, Englewood Cliffs.

[IEEE-610] IEEE Standard Glossary of Software Engineering Terminology, ANSI/IEEE

Std 610-1990, The Institute of Electrical and Electronics Engineers, New York, NY, 1990.

[IFPUG-90] International Function Point User's Group; www.ifpug.org.

[ISO/IEC-15939] ISO/IEC 15939:2002 (E), International Standard, Software Engineering –

Software Measurement Process.

[Jones-86] Capers Jones, 1986, Programming Productivity, McGraw Hill, New York.

[Humphrey-89] Watts Humphrey, 1989, Managing the Software Process, Addison-Wesley,

Reading.

http://www.ifpug.org/

[McCabe-82] Thomas J. McCabe, Structured Testing: A Software Testing Methodology

Using the Cyclomatic Complexity Metric, NBS Special Publication, National Bureau of

Standards, 1982.

[Schulmeyer-98] G. Gordon Schulmeyer, James I. McManus, Handbook of Software Quality

Assurance, 3rd Edition, Prentice Hall PTR, Upper Saddle River, NJ, 1998.

[Westfall-03] Linda Westfall, Are We Doing Well or Are We Doing Poorly, 2003

Applications in Software Measurement (ASM) Conference, available for download:

http://www.westfallteam.com/software_metrics,_measurement_&_analytical_methods.htm

